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1. Introduction 

The purpose of the INEST software is to provide unbiased multilocus estimates of inbreeding 

coefficients within a population, which are robust to a presence of null alleles. The methods 

described in Chybicki and Burczyk (2009) have been originally coded in the version 1.x, 

starting from 2007. At the beginning, a small number of routines allowed me writing the 

software in the single unit. However, after 6 years (in 2013), due to a large number of 

additional lines (majority of routines still in a single unit) and especially the obscure 

structure of some parts, I have found the code difficult to follow and to develop further. 

That’s why I decided to implement the next version completely from scratch. The profit is 

twofold. First, I have split the code into parts related with different methods (statistical and 

others). Second, and probably much more important, I revised the routines responsible for 

the estimation. In effect, the second major release of the software differs slightly in 

estimation algorithms (compared with 1.x) and may return slightly different results. As users 

of the former version can easily note, as compared with the version 1.x, the present release 

has changed the interface. Because the Bayesian approach (IIM) has better statistical 

properties as compared with the maximum likelihood approach (PIM) (Chybicki and Burczyk 

2009), I decided to organise the interface to make IIM the method of choice. However, PIM 

is still available using the menu ‘Miscellanea’. 

Version 2.0 was coded and maintained entirely under Delphi 7, Borland environment. 

However, because D7 (released in 2002) shows some compatibility problems with Windows 

10, since version 2.1, INEST has been successfully ported to LAZARUS (www.lazarus-ide.org) 

and, later, to Turbo Delphi, which appeared to be a more stable programming environment. 

Because INEST 2.1 is compiled using a different compiler, there may be some changes in 
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run-time of procedures.  

Since version 2.2, INEST is maintained under Embarcadero Delphi 10.2, providing the 

support for high-definition screens and system re-scaling. Also, INEST 2.2 provides a new 

functionality in terms of empirical Bayes estimates of observed and expected heterozygosity 

corrected for null alleles (the functionality inspired by Javier Morente). 

Since version 2.3, INEST maintenance is again under LAZARUS. 

2. Data file 

INEST reads only simple text files (no Excel, no Word, and all these types of rich file 

formats). Data have to be organised in the specific order, which will be best explained based 

on the following example: 

5 3 1 

MarkerName1 

MarkerName2 

MarkerName3 

10 12.3 56.2 10 9 5 5 1 1 

20 28.1 15.0 9 3 0 0 10 3 

44 12.8 25.9 9 10 6 2 1 5 

61 24.9 34.8 10 8 5 3 10 3 

12 36.0 44.6 -1 -1 5 4 10 10 

 

Data file begins with the header line, which has 3 integer numbers: Ni – the number of 

individuals, Nl – the number of loci, Ca – the binary indicator for spatial coordinates. Ca = 1 

if coordinates are available and Ca = 0 otherwise. Starting from the second line (and up to 

Nl+1) a file must contain marker names. Then, a file must contain a table of data for 

individuals (Ni lines are expected). Each line starts from a number corresponding to the 

numerical indicator of an individual (Numerical ID). Then, if Ca = 1, X and Y coordinates are 

expected. They are followed by a genotype. Alleles must be separated by space or tab. The 

example without coordinates looks like this: 

5 3 0 

MarkerName1 

MarkerName2 

MarkerName3 

10 10 9 5 5 1 1 

20 9 3 0 0 10 3 

44 9 10 6 2 1 5 

61 10 8 5 3 10 3 

12 -1 -1 5 4 10 10 

Missing genotypes are represented by 0 0 or a pair negative integers. Unlike the version 1.x, 

in the version 2.x missing data are always utilised in the estimation. Therefore, there is no 

difference between 0 and -1, when coding alleles. Data are loaded through the standard 

open dialog launched by pressing the button […] located right to the ‘Data file name:’ field 

in the ‘Input/Output’ box. Once data are correctly parsed, some summary stats are written 
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to the screen. 

3. Estimation of inbreeding coefficients 

The main purpose of the software is to estimate inbreeding coefficients. As previously, 

INEST 2.0 offers two approaches: PIM (or maximum likelihood) and IIM (or Bayesian). 

However, because IIM behaves apparently better than PIM (especially for small samples), 

now it is available readily through the main window. 

3.1. Estimation based on IIM model: 

IIM is implemented as a Bayesian approach. Therefore, it requires additional assumption 

concerning prior distributions for parameters of the model (the likelihood function). Briefly, 

inbreeding coefficients are assumed to follow beta distribution while allele frequencies at a 

given locus follow Dirichlet distribution. 

In order to use IIM model, the number of cycles, the burnin and thinning must be chosen. 

Number of cycles refers to the number of MCMC iterations (or updates of the parameters) 

and generally the more the better. Default values are okay as for a trial analysis, but for final 

estimates longer chains must be used (200,000 cycles or more). Thinning (i.e. keep every 

n-th update) parameter is used to avoid strong autocorrelation between updates and to 

avoid extremely large output files. It is recommended to keep at least 1,000 to get a good 

approximation of posterior distributions. However, I would say that less than 10,000 stored 

updates would be a good option to avoid extremely large text files. Burnin is the number of 

disregarded updates, counting from the first one. It is used to estimate some properties of 

the model, including Deviance Information Criterion (DIC) used for model comparison. 

Because IIM uses the Gibbs sampler, 10% of the total number of updates is enough for 

burnin. Therefore, for 500,000 cycles in total, burnin can be set to 50,000 cycles. 

The sampler is run pressing [Start] button. At this stage, after pressing [Start], a model must 

be specified. The model is defined in terms of the parameters involved. There are three 

types of parameters: n, f and b. n is null alleles, f is inbreeding coefficients and b is 

genotyping failures. Based on these three letters one is able to construct the model of 

choice. For example, nf means that the model includes null alleles and inbreeding (but 

ignores a possibility of genotyping failures). Thus, nfb refers to the full model, with all the 

parameters included. In order to define the null model, when all parameters equal zero, the 

special word ‘null’ must be used. 

Once the model is chosen, the sampler starts running. The progress is shown at the bottom, 

in the status bar. During the analysis successive updates are saved to tab-delimited text 

files. Output files are located in the directory specified in the ‘Output file name’ field (in the 

‘Input/Output’ group box). In order to obtain final estimates, some post-processing is 

needed, as described below.  
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After the specified number of cycles the sampler stops with no successive action. Then, 

quantiles of the marginal posterior distributions for all the parameters can be extracted 

using the inbuilt post-processing routine. Alternatively, any other software can be used 

(probably R package is the most convenient one, but even MS Excel can be used). There are 

six output files generated for a given model: *.bj, *.dic, *.fi, *.hyp, *.pjk and *.het (where * 

is the specified name of the output file). All these files can be loaded pressing […] button 

located right to the ‘Posterior distrib.’ field. 

Contents of output files 

File type (extension) Content 

*.bj Samples from the marginal posterior distribution of 
genotyping failure rates 

*.dic Summary values to be used for model comparison, 
including effective number of parameters (pD) and 
Deviance Information Criterion (DIC) 

*.fi Samples from the marginal posterior distribution of 
individual inbreeding coefficients 

*.hyp Samples from the marginal posterior distribution of 
hyper-parameters, including (theoretical) inbreeding level 
(MeanF) and (empirical) average inbreeding coefficient 
(Avg(Fi)) 

*.pjk Samples from the marginal posterior distribution of allele 
frequencies, including null alleles (denoted by zero) 

*.het Samples from the posterior distribution of observed (cHo) 
and expected (cHe) heterozygosity per locus corrected for 
null alleles 

 
As for a prior distribution, a beta distribution was chosen for inbreeding. Consequently, 

there is no possibility to directly verify whether inbreeding is larger from zero, because 

formally F cannot be equal zero under the beta prior. However, still there is a possibility to 

perform alternative analysis based on a model without inbreeding (i.e. assuming that F = 0). 

Then, model comparison approach can be used to verify which model better fits to data. For 

this purpose INEST 2.x (unlike INEST 1.x) computes Deviance Information Criterion for each 

model. Generally, the model with the lowest DIC outperforms the others. 

The example data analysed with the full model (nfb) gave the following results. After loading 

the file *.hyp, one can see the table: 

X(i) HSMode Mean    Q(2.5%) Q(5.0%) Q(25.0%) Q(50.0%) Q(75.0%) Q(95.0%) Q(97.5%) HPDl(95%) HPDh(95%) 

LogL -1516.0475 -1515.6548 -1531.3280 -1529.0300 -1520.5840 -1515.3850

 -1510.2550 -1503.7330 -1501.4280 -1529.9600 -1501.0970 

af 0.3370 0.5173 0.1040 0.1380 0.2640 0.3810 0.6060 1.2810 1.5680 0.0410 1.2810 

bf 2.1920 3.3580 0.9460 1.1010 1.7670 2.4620 3.7070 7.5550 10.4030 0.7000 7.5900 

MeanF 0.1443 0.1377 0.0572 0.0723 0.1093 0.1362 0.1645 0.2141 0.2259 0.0626 0.2281 

Avg(Fi) 0.1453 0.1358 0.0695 0.0817 0.1130 0.1366 0.1582 0.1934 0.2017 0.0682 0.1994 

ab 0.0010 0.0567 0.0010 0.0020 0.0120 0.0300 0.0720 0.2090 0.2590 0.0000 0.2080 

bb 0.0180 6.8773 0.0230 0.0550 0.3740 1.0130 2.8030 17.5830 39.5850 0.0030 17.1010 

an 0.3460 0.5102 0.0870 0.1250 0.2860 0.4520 0.6860 1.0830 1.2000 0.0080 1.0740 

Avg(Fi) refers to the sample mean inbreeding coefficient. The posterior mean is 0.1358, 

while 95% highest posterior density interval is from 0.0682 to 0.1994. We can see that there 
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is strong support for a presence of inbreeding here. To perform Bayesian procedure of 

model comparison, we need to perform the analysis setting the model to ‘nb’. Then, we can 

load *.dic files to see, which model has lower DIC value. For ‘nfb’ model, DIC is 

Model:        nfb 

Avg(logl(X)): -1515.723 

logl(Avg(X)): -1473.742 

DBar:         3031.446 

Dhat:         2947.484 

pD:           83.962 

DIC:          3115.408 

while for ‘nb’ model it is 

Model:        nb 

Avg(logl(X)): -1534.916 

logl(Avg(X)): -1500.505 

DBar:         3069.832 

Dhat:         3001.009 

pD:           68.823 

DIC:          3138.654 

So, DIC for nb is approximately 3139 while that for ‘nfb’ is 3115, supporting the inbreeding 

model as the better one. In other words, one can conclude that inbreeding is the significant 

component of the model. However, because DIC has no clear relationship with the 

probability of the model, the word “significant” has more qualitative (like “important”) than 

quantitative (like “statistically significant at the level of…”) meaning. 

The list of parameters in the output files 

Parameter Output 
file 

Description 

LogL *.hyp Not a parameter but log-likelihood function of the model 
af *.hyp The hyper-parameter (alpha) of the beta distribution used as 

a prior for inbreeding 
bf *.hyp The hyper-parameter (beta) of the beta distribution used as 

a prior for inbreeding 
MeanF *.hyp The average of the prior distribution; the theoretical 

inbreeding level of the population, from which the sample 
was taken 

Avg(Fi) *.hyp The sample mean inbreeding coefficient 
ab *.hyp The hyper-parameter (alpha) of the beta distribution used as 

a prior for genotyping failure rate 
bb *.hyp The hyper-parameter (beta) of the beta distribution used as 

a prior for genotyping failure rate 
MeanB *.hyp The average of the prior distribution; the theoretical 

genotypic failure rate  
an *.hyp The only variant hyper-parameter of the Dirichlet 

distribution used as a prior for allele frequencies; it is used 
to assess the overall probability for null alleles across loci 
(the remaining alleles have uniform prior distribution) 

b[j] *.bj The parameter of the likelihood function; the rate of random 
genotyping failure at the j-th locus 

f[i] *.fi The parameter of the likelihood function; the individual 
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inbreeding coefficient (of the i-th individual) 
p[j,k] *.pjk The parameter of the likelihood function; the frequency of 

the k-th allele at the j-th locus; p[j,0] denotes null allele 
frequency at the j-th locus 

Avg(logl(X)) *.dic Average of log-likelihood function across iterations 
logl(Avg(X)) *.dic The log-likelihood function for the posterior means 
DBar *.dic The mean deviance estimated across iterations 
Dhat *.dic The deviance estimated for the posterior means 
pD *.dic The effective number of parameters 
DIC *.dic The deviance information criterion for the model 
cHo[j] *.het The observed heterozygosity for the j-th locus corrected for 

null alleles 
cHe[j] *.het The expected heterozygosity for the j-th locus corrected for 

null alleles 

 

Generally, the post-processing procedure returns: posterior mode (estimated using the 

half-sample algorithm), posterior mean (Mean), quantiles of the posterior distribution 

(Q(…%)), and upper and lower limit of the highest density posterior interval (HPDl, HPDh). 

3.2. Estimation based on PIM model: 

PIM is implemented as the expectation-maximization (EM) algorithm. In the current version, 

the algorithm is implemented in such a way that there is no need to set-up any parameter in 

order to perform the analysis. So, the EM procedure is launched through ‘Miscelenea|INEST 

(PIM)’ command in the main menu. There is only a need to agree (or not) on performing the 

jackknife procedure across loci. The jackknifing is used to estimate standard errors (SE) of 

estimates. 

Please note that, once SEs are computed, significance of the parameters can be assessed 

using the Z-test based on the normal distribution theory. In order to test whether an 

estimate is different from zero, one needs to compute Z as Estimate_value / SE and 

compare it to the quantile of the normal N(0,1) distribution. For example, if one wishes to 

test if FIS is significantly larger from zero that Z = f_coef / SE and if Z > 1.96 then the decision 

is ‘yes, it is significantly larger’ and ‘no, FIS does not differ significantly from zero’ otherwise. 

4. Additional functionality 

4.1. Permutation test for heterozygosity excess 

The permutation test can be used to test for the heterozygosity excess. The test is based on 

the conventional inbreeding coefficient, estimated as F = 1 – Ho/He, where Ho and He refers 

to the observed and expected heterozygosity, respectively. Assuming random allele pairing 

(panmixia), any deviation of F from zero is only due to statistical sampling. In order to verify 

whether the observed deviation is a signature of genetic sampling (e.g. inbreeding, 

outreeding) or null alleles, INEST reconstructs the empiric null distribution of F under 
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panmixia based on Np permutations of alleles among genotypes. (By default Np is set to 

100,000, but I would suggest 1,000,000 as for the final estimates.) The procedure produces 

the 95% confidence interval of the null distribution of F. If the observed F falls within the 

confidence interval, heterozygosity excess does not depart from zero (at the significance 

level 0.05). 

 

The result of the permutation procedure obtained for the attached example data. 

 

4.2. Spatial genetic structure 

If coordinates are provided, INEST 2.x can be used to analyse spatial genetic structure using 

spatial autocorrelogram. Five measures of genetic similarity are available: Nason’s F (Loiselle 

et al. 1995), Ritland’s  (Rotland 1996), Moran’s I (estimated as in Streiff et al. 1998; eqn. 4), 

Queller and Goodnight’s r (Queller and Goodnight 1989) and semivariance (eqn. 3 in 

Wagner et al. 2005; in fact equal to the unweighted genetic distance introduced in Smouse 

and Peakall 1999). Nason and Ritland represent kinship (Malecot’s coancestry) coefficient, 

while Moran and Q&G represent relatedness coefficient (see e.g. Hardy and Vekemans 1999 

for definitions). The user can also choose whether intervals are to be determined based on 

the “equal number of pairs” or “equal width” criterion. The former will produce 

correlogram, in which every distance class has the same number of points (pairs of 

individuals). The latter will produce correlogram, in which every distance class will be 

equally long. In consequence, “equal number of pairs” and “equal width” will result in 

variable width and number of points, respectively.  

Significance of the correlogram is determined based on permutations of spatial positions of 

individuals. The number of permutations can be set in the main window (by default it is set 

to 999). After permutations, the null distribution is produced, of which some percentiles are 

shown. If the observed (Obs) value at a given distance class lays outside the bounds [0.025] 

and [0.975], the spatial autocorrelation (i.e. Obs) is statistically significant at the significance 

level of 0.05.  
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If a kinship or relatedness measure is chosen, INEST computes the slope of the log-linear 

regression function, which can be used to quantify the overall relationship between genetic 

similarity and distance. Under the isolation by distance (Rousset 2000), the slope should be 

negative, what means that relatedness decreases together with a distance between 

individuals. So, if the slope (Obs) of the correlogram lays outside the bounds [0.025] and 

[0.975], then there is the overall spatial genetic structure (of form expected for IBD). 

The menu ‘Export’ in the window menu allows to extract some data, including ‘Genetic 

similarity matrix’, ‘Distance matrix’, ‘Allele frequencies’ used in the estimation and ‘Distance 

to Nearest Neighbours’. The first two matrices can be copy/pasted to a file and used for 

other purposes (e.g. Mantel test, Principle Coordinate Analysis). Allele frequencies may be 

worth looking at, if one is interested in the frequencies computed without accounting for 

null alleles and missing data. In fact, these allele frequencies are used to compute genetic 

similarity measures in the SGS unit. The last option extracts distances to the nearest 

neighbour for every individual. 

4.3. Bottleneck tests 

This option was implemented in order to perform a test for demographic bottleneck. The 

main test is based on the phenomenon known as the excess of heterozygosity (or genetic 

diversity) in respect to a given number of alleles, typically generated in consequence of 

bottleneck as compared to a demographically stable population (i.e. a population of a 

constant size). The test was developed by Luikart and Cornuet (1996; Genetics). Although a 

widely-cited BOTTLENEK software (Piry et al. 1999) implements this test, I found 

BOTTLENECK to be probably buggy in respect to procedures for the Stepwise Mutation 

Model (SMM) and the Two-Phase Model (TPM). For example, I was unable to reproduce the 

distribution of conditional likelihood for a mutation rate (theta; Fig. 2 in Luikart and Cornuet 

1996) as well as the original results for the case study in Luikart and Cornuet (1996) for the 

SMM model. In fact, the likelihood of the mutation rate (theta) estimated with 

BOTTLENECK, required to perform the test under SMM and TPM model of mutation, is 

shifted right (see figure below). As a result, BOTTLENECK overestimates the reference 

equilibrium heterozygosity. This effect is especially strong for low-to-moderate number of 

alleles at a locus, where little change in a mutation rate leads to visible differences in 

genetic diversity. In consequence, p-value of the test for heterozygosity excess (under SMM 

or TPM) is over-estimated, leading too often to false negatives. This finding led me to 

implement my own version of the algorithm, which performs correctly under both models.  
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The likelihood of theta for K=2 (left) and 3 (right) and 50 haploid chromosomes in a sample. 

L&C1996 reproduces the original plot in Luikart and Cornuet 1996, BOTTLENECK – the likelihood 

estimated with BOTTLENECK software, CoalShrubs – The likelihood estimated with my own 

implementation (used in INEST). To obtain L&C1996, I have digitalized the original figure and 

interpolated a series of discrete points along the distribution. 

The interface is very simple. ‘Average multi-step mutation size’ equals to g parameter of 

the two-sided geometric distribution used to model multi-step mutations (see Eq. 1 in 

Williamson-Natesan 2005, Conserv Genet). The equation for variance in multi-step mutation 

size, equal to g
2 = 2g - 3g + 2, can be used to translate the parameter used in BOTTLENECK 

software (g
2) into g and vice versa. ‘Proportion of multi-step mutations’ corresponds to pg 

parameter in the model (see Williamson-Natesan 2005). Note that BOTTLENECK uses  

(1 - pg). The default settings are likely okay for most data, assuming they are 

microsatellite-based genotypes. Parameters of the Two-Phase Model were set according to 

recommendations by Peery et al. (2012; Mol Ecol). However, different values may be used 

to verify robustness of the bottleneck test in respect to assumptions of a mutation model. 

Alternatively, INEST implements a procedure where either pg or dg or both vary randomly 

during simulations. When pg is set to a negative value then in each iteration a random value 

of pg is drawn from a beta distribution with parameters =/(+)= 0.292 and 

=1/(++)= 0.207 (where  and  are standard parameters of beta distribution). If dg is 

set to a negative value then in each iteration dg = 2 + X, where X is drawn from a log-normal 

distribution with parameters =-0.246 and =0.770. Note, that pg and dg can be set to vary 

independently. The values of parameters for a beta distribution and a log-normal 

distribution were determined based on data in Peery et al. (2012; Table 4). These values can 

be changed, however, because INEST requests to confirm them at the beginning of the 

analysis. Setting mutation parameters to vary during coalescent simulations is expected to 

increase a variance of equilibrium parameter values. So, it may have larger effect on the 

tests based on combined Z-values (Test 2 in Luikart & Cornuet 1996) than the Wilcoxon test 

(see below). It should be stressed that such an approach is not an original solution, and it 

was suggested earlier by Williamson-Natesan (2005) who, instead of using fixed pg, 
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proposed to allow pg to vary during coalescent simulations (pg was drawn from a uniform 

distribution in the range 0-0.2). 

INEST implements two statistical tests: the Z-test based on combined Z scores for particular 

loci and the Wilcoxon signed-rank test. In the case of the Wilcoxon test p-values are 

determined both based on the assumption of normality (number of informative loci should 

be >20) and based on 1,000,000 permutations to approximate the exact value (normality 

not assumed here). However, as permutations may raise issues when a huge number of 

markers is used (e.g. thousands of SNPs), this option can be disabled using ‘Options|Use 

permutation for p-value’ (when unchecked). 

In addition to equilibrium heterozygosity values, INEST returns also values of M-Ratio values 

(Garza and Williamson 2001). However, in order to perform properly the test for the 

deficiency in M-Ratio (treated as a signal of bottleneck), one needs to provide repeat motif 

lengths for microsatellite loci (using ‘Options|Set motif lengths’ menu). The idea behind the 

test for M-Ratio is analogous to that for the excess of heterozygosity (Williamson-Natesan 

2005). However, due to specificity of a mutation process, the analysis is meaningful only 

under SMM and TPM models. 

4.4. Convert FSTAT to INEST files 

This tool can be used to prepare input files readable for INEST 2.x based on the FSTAT (Goudet 

1995) input files. Each population in the FSTAT file will be written to the separate input file. 

5. Closing remarks 

This is an uncommercial software and may contain some bugs, although the author have 

done his best to check for errors in the routines related with the estimation. Therefore, the 

user is requested to inform about any erratic behaviour. Also, although no regular 

assistance can be assured, the user can count on the author’s help, if needed. In this case 

he/she is requested to use the header “INEST” in their correspondence. E-mails will be 

replied as soon as possible. Good luck! 

6. Bug fixes 

10. April, 26, 2024. Symptom: computational issues when a huge number of markers is used 

for bottleneck testing. Fixed. 

9. July, 8, 2020. Symptom: problems with output file post-processing due to repeated 

analysis under the same output file name. Fixed. 

8. June, 8, 2017. Symptom: ‘Invalid floating-point operation’ error raised when ‘PIM’ 

estimator is used for data with no variation in genotypes at some loci. Fixed. 

7. January, 30, 2015. Symptom: data on marker(s) with totally missing genotypes (across all 
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individuals) cause crush. Fixed. 

6. January, 29, 2015. Symptom: expected heterozygosities differ slightly compared with 

other genetic software. In fact, INEST offered a very simple, yet approximately unbiased 

estimator developed with regard to uninbred populations. Now, a bit more sophisticated 

estimator is implemented (see E. 7 in Shete 2003; doi: 10.1093/jhered/esg078). Fixed. 

5. April, 2, 2014. Symptom: If the system decimal separator is set to comma (French SI), the 

post-processing routine causes fatal error. The expected decimal separator for this routine 

is dot (English SI), while INEST output files are generated using the system setting. Fixed. 

4. March 31, 2014. Symptom: If missing genotypes are present then SGS analysis with the 

Ritland kinship coefficient can cause fatal error. Fixed. 

3. March 28, 2014. Symptom: If missing genotypes are present then ‘all’ keyword used to 

specify the model for the Bayesian analysis causes fatal error. Fixed. 

2. March 12, 2014. Symptom: The main edit window does not scroll down automatically 

after loading an input file. (It may look like the main summary table does not update.) Fixed. 

1. March 12, 2014. Symptom: Once an incorrect input file is tried to be loaded, the program 

does not allow to load any other file (correct or not) anymore, unless restarted. Fixed. 


